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The isotropic to nematic transition in a system of soft spherocylinders is studied by means of grand canoni-
cal Monte Carlo simulations. The probability distribution of the particle density is used to determine the
coexistence densities of the isotropic and the nematic phases. The distributions are also used to compute the
interfacial tension of the isotropic-nematic interface, including an analysis of finite size effects. Our results
confirm that the Onsager limit is not recovered until for very large elongation, exceeding at leastL /D=40, with
L the spherocylinder length andD the diameter. For smaller elongation, we find that the interfacial tension
increases with increasingL /D, in agreement with theoretical predictions.
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I. INTRODUCTION

On change of density, suspensions of rodlike particles un-
dergo a phase transition between an isotropic fluid phase,
where the particle orientations are evenly distributed, and an
anisotropic nematic fluid phase, where the particle orienta-
tions are, on average, aligned. This phenomenon was ex-
plained by Onsager in a theory based on infinitely elongated
hard spherocylindersf1g. Onsager theory has been remark-
ably successful at describing the isotropic to nematicsINd
transition, and still serves as the basis for many theoretical
investigations of the properties of liquid crystals. Over the
last 20 years, for instance, several groups have investigated
the properties of the IN interface using Onsager-type density
functional approachesf2–7g. An important finding of these
studies is that the interfacial tensiongIN of the IN interface is
minimized when the director, which is the axis of average
orientation of the particles, lies in the plane of the interface.
In the case of in-plane alignment,gIN is predicted to be very
low, but the precise value varies considerably between dif-
ferent authorsf8,9g. Theoretical estimates forgIN typically
range from 0.156f7g to 0.34f3g, in units ofkBT/LD, with L
the rod length,D the rod diameter,T the temperature, andkB
the Boltzmann constant.

Obviously, the Onsager limit of infinite rod length is
purely academic. In order to describe more realistic situa-
tions, it is necessary to go beyond the Onsager approxima-
tion, and consider the case of finite rod length. An example is
the theoretical work of Ref.f10g, which demonstrates that
the interfacial tension in the case of finite rod length is con-
siderably lower than predicted by Onsager theory.

To test the accuracy of the theoretical estimates ofgIN,
one might envision a direct comparison to experimental data.
Unfortunately, this is not straightforward. The models used
in theoretical treatments of the IN interface are typically
rather simplistic, usually based on a short-ranged pair poten-
tial in a system of monodisperse spherocylinders. It is not
reasonable to expect quantitative agreement with experi-
ments using these models, because the interactions in the
experimental system will be much more complex. For ex-
ample, polydispersity may be an important factor, and it is
not clear to what extent long-range interactions play a role.

Even the experimental determination of the rod dimensionsL
and D, required if a comparison to theory is to be made,
presents complicationsf9g.

In order to validate the assumptions made by the various
theoretical approaches, it is nevertheless important to test the
accuracy of the theoretical predictions. To this end, computer
simulations are ideal, because they, in principle, probe the
phase behavior of the model system without resorting to ap-
proximations. With inexpensive computer power readily
available nowadays, several groups have taken the opportu-
nity to investigate the IN transition by means of simulations
f11–18g. An example of this approach is Ref.f12g, where the
coexistence properties of the bulk isotropic and nematic
phases of hard spherocylinders are carefully mapped out us-
ing Gibbs ensemble Monte Carlof19g. These simulations
generally recover the Onsager limit for long rods, while for
shorter rods pronounced deviations show upf12g. Unfortu-
nately, the Gibbs ensemble cannot be used to measuregIN,
which is our aim in this work.

To obtaingIN in simulations, different techniques must be
used. One such technique is based on the anisotropy of the
pressure tensor. In Ref.f18g, this method is applied to sus-
pensions of ellipsoids with axial ratiok=A/B=15, whereA
is the length of the symmetry axis of the ellipsoids, andB
that of the transverse axis. The corresponding interfacial ten-
sion is 0.006±0.005kBT/B2<0.09kBT/AB if a hard inter-
action potential is used, and 0.011±0.004kBT/B2

<0.165kBT/AB using a soft potential. Note that the aniso-
tropy of the pressure tensor is very small, and therefore dif-
ficult to measure accurately in practice, as indicated by the
error bars.

In Ref. f20g, again forssoftd ellipsoids withk=15, a value
of the interfacial tension gIN =0.016±0.002kBT/B2

<0.24kBT/AB is reported. This result was obtained by mea-
suring the capillary broadening of the IN interface. Accord-
ing to capillary wave theoryf21g, the mean squared ampli-
tudes of the capillary fluctuations are proportional to 1/gIN,
and this can be used to obtain the interfacial tension. Unfor-
tunately, capillary wave theory is only valid in the long-
wavelength limit, such that very large system sizes are re-
quired. Moreover, if, as in Ref.f20g, periodic boundary
conditions are used, two interfaces will be present in the
simulation box. SincegIN is very small, large capillary fluc-
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tuations can occur, and one needs to be aware of interactions
between the two interfaces.

Clearly, in order to obtaingIN more accurately, much
more computer power or different simulation techniques are
required. Recent advances in grand canonical sampling
methodsf22,23g have enabled accurate measurements of the
interfacial tension in simple fluidsf24,25g, and complex flu-
ids such as polymer solutionsf26g and colloid-polymer mix-
turesf27g. Our aim in this paper is to apply these techniques
to the IN transition in a system of soft spherocylinders, and
to extract the corresponding phase diagram and the interfa-
cial tension. Simulations in the grand canonical ensemble
offer a number of advantages over the more conventional
methods discussed previously. More precisely, in grand ca-
nonical simulations, both the coexistence properties can be
probed, as in the Gibbs ensemble, as well as the interfacial
properties. Additionally, finite-size scaling methods are avail-
able that can be used to extrapolate simulation data to the
thermodynamic limitf28–31g. It has been demonstrated that
grand canonical ensemble simulations combined with novel
finite size scaling algorithms can yield results of truly im-
pressive accuracyf31g.

This article is structured as follows: First, we introduce
the soft spherocylinder model used in this work. Next, we
describe the grand canonical Monte Carlo method, and ex-
plain how the coexistence properties and the interfacial ten-
sion are obtained. Finally, we present our results, followed in
the last section by a discussion and an outlook to future
work.

II. MODEL

In this study, the particles are modeled as repulsive soft
spherocylinders of elongationL and diameterD. Hard
spherocylinders can, in principle, be dealt with, too, but they
severely decrease the efficiency of the simulationsthe accep-
tance rates in simulations of hard spherocylinders are typi-
cally 1000 times lower as compared to the soft spherocylin-
ders considered in this workf32gd. The interaction between
two rodsA andB is given by a pair potential of the form

VABsrd = He, r , D,

0, otherwise,
J s1d

with r the distance between two line segments of lengthL;
see Fig. 1. The total energy is thus proportional to the num-
ber of overlaps in the system. In this work, the rod diameter
D is taken as unit of length, andkBT as a unit of energy. The
strength of the potential is set toe=2. Note that in the limit
e→`, this model approaches a system of infinitely hard
rods.

To study the IN transition, we typically use the density
and the rod alignment as order parameters. Note that both the
isotropic and the nematic phase are fluid phases, in the sense
that long-range positional order of the centers of mass is
absent. In the nematic phase, however, there is orientational
order where, on average, the rods point in one direction
scalled the directord. In the isotropic phase, on the other
hand, there is no orientational order. Since the density of the
nematic phase is slightly higher than of the isotropic phase,

we may use the particle number densityr=N/V to distin-
guish between both phases, withN the number of rods in the
system andV the volume of the simulation box. Following
convention, we also introduce the reduced densityr!

=r /rcp, with rcp=2/sÎ2+sL /DdÎ3d the density of regular
close packing of hard spherocylinders. Orientational order is
as usual measured by theS2 order parameter, defined as the
maximum eigenvalue of the orientational tensorQ:

Qab =
1

2N
o
i=1

N

s3uiauib − dabd. s2d

Here, uia is the a componentsa=x,y,zd of the orientation
vectoruW i of rod i snormalized to unityd, anddab is the Kro-
necker delta. In the case of orientational order, such as in the
nematic phase,S2 assumes a value close to one, while in the
disordered isotropic phase,S2 is close to zero.

III. SIMULATION METHOD

The simulations are performed in the grand canonical en-
semble. In this ensemble, the volumeV, the temperatureT,
and the chemical potentialm of the rods are fixed, while the
number of rodsN inside the simulation box fluctuates. The
insertion and removal of rods are attempted with equal prob-
ability, and accepted with the standard grand canonical Me-
tropolis rules, given by AsN→N+1d=minf1,fV/ sN
+1dge−bDE+bmg and AsN→N−1d=minf1,sN/Vde−bDE−bmg,
with DE the energy difference between the initial and final
state, andb=1/kBT f29,33g. The simulations are performed
in a three-dimensional box of sizeLx3Ly3Lz using periodic
boundary conditions in all directions. In this work, we fix
Lx=Ly, but we allow for elongation in the remaining direc-
tion LzùLx. Moreover, to avoid double interactions between
rods through the periodic boundaries, we setLx.2L.

During the simulations, we measure the probabilityPsNd,
defined as the probability of observing a system containingN

FIG. 1. Two-dimensional representation of the simulation model
of this work. The liquid crystals are modeled as soft spherocylinders
with elongationL and diameterD. Two rods A and B interact via
the pair potential of Eq.s1d, which is a function of their minimum
distancer only. If the rods overlap, the system pays a constant
energy coste. To speed up the determination of overlap, the simu-
lation box is subdivided into cubic cells with edge lengtha; see the
details in text.
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rods. Note that the shape of the distribution will depend on
the rod elongationL /D, the temperatureT, and the chemical
potentialm. Moreover, there may be finite-size effects, intro-
ducing additional dependences on the box dimensionsLx and
Lz. At phase coexistence, the distributionPsNd becomes bi-
modal, with two peaks of equal area; one located at small
values ofN corresponding to the isotropic phase, and one
located at high values ofN corresponding to the nematic
phase. A typical coexistence distribution is shown in Fig. 2,
where the logarithm ofPsNd is plotted. Coexistence is deter-
mined using the equal area rulef34g. At coexistence, the
equal area rule implies thate0

kNlPsNddN=ekNl
` PsNddN, with

kNl the average of the full distributionkNl=e0
`NPsNddN,

where we assume thatPsNd has been normalized to unity,
e0

`PsNddN=1. The coexistence density of the isotropic phase
follows trivially from the average ofPsNd in first peak
rISO=s2/Vde0

kNlNPsNddN, and similarly for the nematic
phaserNEM=s2/VdekNl

` NPsNddN, where the factors of 2 are a

consequence of the normalization ofPsNd.
The interfacial tensiongIN is extracted from the logarithm

of the probability distributionW;kBT ln PsNd. Since −W
corresponds to the free energy of the system, the average
height DF of the peaks inW, measured with respect to the
minimum in between the peaks, equals the free energy bar-
rier separating the isotropic from the nematic phase. When
the overall density of the system is in the interval between
the peaksrISO!r!rNEM, coexistence between an isotropic
and nematic domain is observed. A snapshot of the system in
this regime reveals a slab geometry, with one isotropic re-
gion, and one nematic region, separated by an interfacesbe-
cause of periodic boundary conditions, there are actually two
interfacesd. An example snapshot is shown in Fig. 3. Note

that the director of the nematic phase lies in the plane of the
interfaces. This was the typical case for the snapshots studied
by us, and is consistent with the theoretical prediction that
in-plane alignment yields the lowest free energy.

The barrierDF in Fig. 2 thus corresponds to the free
energy cost of having two interfaces in the system. Since, in
this work, the box dimensions are chosen such thatLx=Ly
and LzùLx, the interfaces will be oriented perpendicular to
the elongated direction, since this minimizes the interfacial
area, and hence the free energy of the system. The total in-
terfacial area in the system thus equals 2Lx

2. Since the inter-
facial tension is simply the excess free energy per unit area,
we may write

gINsLxd = DF/s2Lx
2d, s3d

with gINsLxd the interfacial tension in a finite simulation box
with lateral dimensionLx f28g. To obtain the interfacial ten-
sion in the thermodynamic limit, one can perform a finite
size scaling analysisf28g to estimate limLx→`gINsLxd. Alter-
natively, away from any critical point, the most dominant
finite size effects will likely stem from interactions between
the two interfaces. In this case, it is feasible to use an elon-
gated simulation box withLz@Lx, such as in Fig. 3. The
advantage of using an elongated simulation box is that inter-
actions between the interfaces are suppressed. This enhances
a flat region inW between the peaks, indicating that the
interfaces are no longer interacting, and that finite size ef-
fects will likely be small. In this work, both approaches will
be used.

If the free energy barrierDF is large, transitions between
the isotropic and the nematic phase become less likely, and
the simulation will spend most of the time in only one of the
two phases. A crucial ingredient in our simulation is there-
fore the use of a biased sampling technique. We use succes-
sive umbrella samplingf23g to enable accurate sampling in
regions wherePsNd, due to the free energy barrier separating
the phases, is very small. Note also that phase coexistence is
only observed if the chemical potentialm is set equal to its
coexistence value. This value is in general not known at the
start of the simulation, but it may easily be obtained by using
the equationPsNum1d=PsNum0debsm1−m0dN, with PsNumad the
probability distributionPsNd at chemical potentialma. In the
simulations, we typically set the chemical potential to zero
and use successive umbrella sampling to obtain the corre-

FIG. 2. Coexistence distributionW=kBT ln PsNd of the isotropic
to nematic transition in a system of soft rods interacting via Eq.s1d
with e=2 andL /D=15. The low-density peak corresponds to the
isotropic phasesISOd, the high-density peak to the nematic phase
sNEMd, and the barrierDF to the free energy difference between
the two phasessDF is given by the average peak height as measured
from the minimum in between the peaksd. The above distribution
was obtained using box dimensionsLx=2.1L and Lz=8.4L. The
coexistence value of the chemical potential reads asm=5.15 and
was obtained using the equal area criterion described in the text.

FIG. 3. Snapshot of a system of soft spherocylinders at IN co-
existence. The spherocylinders are shaded according to their orien-
tation. On the left side of the dashed line the system is isotropic, on
the right side it is nematic. The second interface coincides with the
boundaries of the box in the elongated direction.
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sponding probability distribution. We then use the above
equation to obtain the desired coexistence distribution, in
which the area under both peaks is equal.

IV. NUMERICAL OPTIMIZATIONS

Most of the CPU time in our simulations is spent on cal-
culating the distancer between two line segments; see Fig. 1.
Naturally, one tries to minimize the number of calls to the
routine that determines the distance. To this end, we use a
cubic linked cell structure, which is schematically illustrated
in Fig. 1. The crucial point is that the lattice constanta is
chosen such thatD,a,L. To determine if rod B in Fig. 1
overlaps with any of the other rods in the system, it is suffi-
cient to consider only those rods contained in the cubes in-
tersected by rod Bsshaded grayd, plus the rods contained in
the nearest and next-nearest neighbors of these cubes. Since
the isotropic to nematic transition occurs at low density, most
cubes will be empty, resulting in a substantial efficiency
gain. Some CPU time is used for manipulating the linked cell
structure, but for large systemss<N.1500d and long rods
s<L /D.10d, the gain in efficiency is already a factor of 5.
Some fine tuning is required to obtain an optimal value of the
lattice constant. We found thata<0.2L typically gives good
results.

A further optimization concerns the calculation of theS2
order parameter; see Eq.s2d. In a naive implementation, de-
termining the orientational tensorQ involves anOsNd loop
over all rods in the system. In our implementation, the tensor
elements ofQ are updated after each accepted Monte Carlo
move, which can be done at the cost of only a few additions
and multiplications. Since we keep the tensor elements up-
dated throughout the simulation, theOsNd loop of Eq. s2d
never needs to be carried out. Finally, to determine the maxi-
mum eigenvalue ofQ, we do not use a numerical scheme,
but instead use the exact expression for the roots of a third
degree polynomial. The advantage of this implementation is
that the value ofS2 is known exactly throughout the simula-
tion, at a cost exceeding no more than one percent of the
total invested CPU time.

We conclude this section with a few benchmarks. Fore
=2 in Eq. s1d, we found that the acceptance rate of grand
canonical insertion is around 9% in the isotropic phase, and
it decreases to around 6% in the nematic phase. The accep-
tance rates are rather insensitive toL /D. With the optimized
implementation described in this section, we can typically
generate 5000–8000 accepted grand canonical moves per
second on a 2.2 GHz AMD Opteron processor.

V. RESULTS

A. Phase diagram

We first use our grand canonical Monte Carlo scheme to
determine the IN phase diagram of the soft spherocylinder
system of Eq.s1d using e=2. For several rod elongations
L /D, we measured the distributionPsNd, from which rISO

andrNEM were obtained. The system size used in these simu-
lations is typicallyLx=Ly=2.1L andLz=4.2L. In Fig. 4, we
plot the reduced density of the isotropic and the nematic

phase as function ofL /D. We observe that the phase diagram
is qualitatively similar to that of hard spherocylindersf12g,
the quantitative difference being that, for soft rods, the IN
transition is shifted toward higher density. The inset of Fig. 4
shows the concentration variablec=pDL2r /4 as a function
of D /L. For hard spherocylinders, Onsager theory predicts
that cISO=3.29 andcNEM=4.19 in the limit of an infinite rod
length, or equivalentlyD /L→0. In case of the soft potential
of Eq. s1d, these values must be multiplied bys1−e−bed−1

<1.16 for e=2. In the inset of Fig. 4, the corresponding
limits are marked with arrows. As in Ref.f12g, we observe
that the simulation data for the isotropic phase smoothly ap-
proach the Onsager limit, while the nematic branch of the
binodal seems to overshoot the Onsager limit. This we at-
tribute to equilibration problems. To simulate the IN transi-
tion in the limit D /L→0, large system sizes are required,
and it becomes increasingly difficult to obtain accurate re-
sults. To quantify the uncertainty in our measurements, addi-
tional independent simulations for rod elongationL /D=25,
30, and 35 were performed. The corresponding data are also
shown in Fig. 4. ForL /Dù30, we observe significant scat-
ter, while for L /Dø25, the uncertainty is typically smaller
than the symbol size used in the plots.

B. Interfacial tension

Next, the interfacial tensiongIN of the IN interface is
determined forL /D=10 and L /D=15. Unfortunately, the
system size used to compute the phase diagram in the previ-
ous section was insufficient to accurately extract the interfa-
cial tension because no flat region between the peaks inPsNd
could be distinguished. This indicates that the interfaces are
still strongly interacting. To properly extract the interfacial
tension, much larger systems turned out to be required. In
this case, care must be taken in the sampling procedure.

FIG. 4. Soft spherocylinder phase diagram of the IN transition
using e=2 in Eq. s1d. Shown is the reduced densityr! of the iso-
tropic phasesclosed circlesd and of the nematic phasesopen circlesd
as a function ofL /D. The inset shows the concentration variablec
as a function ofD /L for both the isotropic and the nematic phase.
The lower and upper arrow in the inset mark the Onsager limit
D /L→0 for the isotropic and the nematic phase, respectively. The
lines connecting the points serve as a guide to the eye.
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Many sampling schemes, especially the ones that are easy to
implement, such as successive umbrella sampling, put a bias
on the density only. Such schemes tend to “get stuck” in
metastable droplet states when the system size becomes large
f26g. As a result, one may have difficulty reaching the state
with two parallel interfaces, in which case Eq.s3d cannot be
used.

Therefore, for large systems, one must carefully check the
validity of the simulation results. To this end, we occasion-
ally inspect simulation snapshots. For sufficiently elongated
simulation boxesLz@Lx and at densities inside the coexist-
ence regionrISO!r!rNEM, we indeed observe two planar
interfaces oriented perpendicular to the elongated direction,
in accord with Fig. 3. To further check the consistency of the
measured distributionsPsNd, we performed a number of ad-
ditional grand canonical simulations using a biased Hamil-
tonian of the formH=H0+W, with H0 the Hamiltonian of
the real system defined by Eq.s1d andW=−kBT ln PsNd. If
the measuredPsNd is indeed the equilibrium coexistence dis-
tribution of the real system, a simulation using the biased
Hamiltonian should visit the isotropic and the nematic phase
equally often on averagef23,35g. This is illustrated in the top
frame of Fig. 5, which shows theS2 order parameter as a
function of the elapsed simulation time during one such bi-
ased simulation. Indeed, we observe frequent transitions be-
tween the isotropicsS2,0d and the nematic phasesS2,1d.
Also shown in Fig. 5 is the corresponding time series of the

reduced density. In case a perfect estimate forPsNd could be
provided, the measured distribution in the biased simulation
will become flat in the limit of a long simulation time. The
deviation from a flat distribution can be used to estimate the
error in PsNd, or alternatively, to construct a better estimate
for PsNd. The latter approach was in fact adopted by us.
First, successive umbrella sampling is used to obtain an ini-
tial estimate forPsNd. This estimate is then used as the input
for a number of biased simulations using the modified
Hamiltonian, and improved iteratively each time.

To obtain the interfacial tension, the most straightforward
approach is to fix the lateral box dimensions atLx=Ly, and to
increase the elongated dimensionLz@Lx until a flat region
between the peaks in the distributionPsNd appears. For soft
spherocylinders of elongationL /D=10, the results of this
procedure are shown in Fig. 6. Indeed, we observe that the
region between the peaks becomes flatter as the elongation of
the simulation box is increased. Unfortunately, even for the
largest system that we could handle, the region between the
peaks still displays some curvature. In other words, the in-
terfaces are still interacting, indicating that even more ex-
treme box elongations are required. Ignoring this effect, and
applying Eq.s3d to the largest system of Fig. 6, we obtain for
the interfacial tensiongIN =0.0022kBT/D2. For rod elonga-
tion L /D=15, the distribution of the largest system that we
could handle is shown in Fig. 2. The height of the barrier
reads asDF=10.6kBT, and the corresponding interfacial ten-
sion gIN =0.0053kBT/D2.

An alternative method to obtain the interfacial tension is
to perform a finite size scaling analysis. Following Ref.f28g,
the interfacial tensiongsLxd in a cubic system with edgeLx,
shows a systematicLx dependence that can be written as

gsLxd = g` + a/Lx
2 + b lnsLxd/Lx

2, s4d

with g` the interfacial tension in the thermodynamic limit
sassuming periodic boundary conditions and dimensionality

FIG. 5. Monte Carlo time series of a biased grand canonical
simulation. The top frame shows theS2 order parameter as a func-
tion of the invested CPU time, the lower frame the reduced density,
with CPU time expressed in hours on a 2.6 GHz Pentium. During
the simulation, the reduced density was confined to the interval
0.245,r!,0.275, as indicated by the horizontal lines in the lower
figure. The data were obtained usingL /D=15, e=2, Lx=2.1L and
Lz=8.4L, which are the same parameters as used in Fig. 2.

FIG. 6. Coexistence distributionsW=kBT ln PsNd of soft
spherocylinders withL /D=10 ande=2 for various system sizes. In
each of the above distributions, the lateral box dimension was fixed
at Lx=Ly=2.3L, while the perpendicular dimension was varied:sad
Lz=2.3L; sbd Lz=10.35L; scd Lz=13.8L. The corresponding free en-
ergy barriersDF are sad 1.52±0.05;sbd 2.47±0.13;scd 2.29±0.15,
in units ofkBT. The error bars indicate the magnitude of the scatter
in DF for a number of independent measurements.
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d=3d. In general, the constantsa andb are not known. How-
ever, recent theoretical argumentsf36g suggest that in three
dimensions, the logarithmic term should vanish, implyingb
=0. To estimateg`, we used Eq.s3d to measuregsLxd for a
number of different system sizes. We then used Eq.s4d to
extrapolate these measurements to the thermodynamic limit,
assumingb=0. For soft spherocylinders, the results of this
procedure are summarized in Fig. 7. Shown is the interfacial
tension of the finite system as a function ofsL /Lxd2. The data
seem reasonably well described by Eq.s4d, as is indicated by
the fits. The corresponding estimates for the interfacial ten-
sion aregIN =0.0035kBT/D2 and gIN =0.0059kBT/D2, for
L /D=10 and 15, respectively.

For comparison, the arrows in Fig. 7 mark the interfacial
tension as obtained using the previous method of Fig. 6.
Clearly, there is some discrepancy. The problem related to
the first method is that the system size was not sufficient to
completely suppress interface interactions. Moreover, the lat-
eralLx dimension was also rather small, so there may still be
finite size effects in this dimension. Hence, we believe the
finite size scaling results to be more reliable. The latter esti-
mates are listed in Table I, together with the coexisting phase
densities, which effectively summarizes the main results of
this work. To our knowledge, this is the first study to report

a systematic finite size scaling analysis of the IN interfacial
tension in a continuous modelssee Ref.f37g for simulation
results of a liquid crystal model defined on a latticed. The
results of Fig. 7 seem reasonable, but simulations of larger
systems are clearly needed, in order to confirm the validity of
Eq. s4d in systems of elongated particles. The advantage of
the present simulation approach is that the statistical errors
are small, and that finite size effects are clearly visible as a
result.

VI. DISCUSSION

In this section, we compare our findings to other work.
More precisely, we considers1d theoretical treatments within
the Onsager approximation,s2d theoretical treatments be-
yond the Onsager approximation, ands3d other simulations.
For reasons outlined in the Introduction, we do not compare
to experimental data.

It is clear from the phase diagram of Fig. 4 that the On-
sager limit is not recovered until very large rod elongation,
exceeding at leastL /D=40. As a result, our estimates for the
interfacial tension differ profoundly from Onsager predic-
tions. Typically,gIN in our simulations is four times lower
compared to Onsager estimates. Note that our simulations
also show thatgIN increases withL /D, toward the Onsager
result, so there seems to be qualitative agreement. However,
to properly access the Onsager regime, additional simula-
tions for large elongationL /D are required. Unfortunately, as
indicated by the scatter in the data of Fig. 4, and also in Ref.
f12g, such simulations are tremendously complicated. It is
questionable if present simulation techniques are sufficiently
powerful to extractgIN with any meaningful accuracy in the
Onsager regime.

If we compare to the theory of Ref.f10g, which goes
beyond the Onsager approximation and should therefore be
more accurate for shorter rods, we observe better agreement.
For L /D=10, the theory predictsgIN =0.0877kBT/ sL+DdD,
which still differs from our result by a factor of approxi-
mately 2. ForL /D=15, however, a naive interpolation of the
data in Ref.f10g yields gIN <0.1kBT/ sL+DdD, which ex-
ceeds our result by only 6%. Note that Ref.f10g considers
hard spherocylinders, whereas our work is based on soft
spherocylinders. The simulations of Ref.f18g on ellipsoids
suggest that the interfacial tension increases, when switching
from a hard to a soft potential. The good agreement we ob-
serve with Ref.f10g should therefore be treated with some
care.

FIG. 7. Finite size extrapolation of the IN interfacial tension of
soft spherocylinders withe=2 and rod elongationL /D=10 and 15.
Shown is the interfacial tension of the finite systemgsLxd in units of
kBT/D2, measured in a cubic system with edgeLx, as a function of
sL /Lxd2. Lines are linear fits to the data using Eq.s4d with b=0. The
upperslowerd arrow indicates the estimate ofgIN obtained using the
method of Fig. 6 forL /D=15s10d.

TABLE I. Bulk properties of the coexisting isotropic and nematic phase in a system of soft spherocylin-
ders interacting via Eq.s1d with e=2 and rod elongationL /D=10 and 15. Listed are the reduced densityr!

and the normalized number densityrLD2 of the isotropic and the nematic phase. Also listed is the interfacial
tensiongIN of the IN interface, obtained using finite size scaling, expressed in various units to facilitate the
comparison to other work. The error bar in the latter quantity indicates the uncertainty of the fit in Fig. 7.

L /D Isotropic phase Nematic phase Interfacial tensiongIN

r! rLD2 r! rLD2 kBT/D2 kBT/LD kBT/ sL+DdD

10 0.363 0.388 0.397 0.424 0.0035±0.0003 0.035 0.039

15 0.244 0.267 0.280 0.307 0.0059±0.0001 0.089 0.094
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As mentioned in the Introduction, computer simulations
of soft ellipsoids withk=15 yield interfacial tensions of
gIN =0.011±0.004kBT/B2 and gIN =0.016±0.002kBT/B2

f18,20g. For L /D=15, our result for soft spherocylinders is
considerably lower. Obviously, spherocylinders are not ellip-
soids, and this may well be the source of the discrepancy.
Note also that the shape of the potential used by us is differ-
ent from that of Refs.f18,20g.

In summary, we have performed grand canonical Monte
Carlo simulations of the IN transition in a system of soft
spherocylinders. By measuring the grand canonical order pa-
rameter distribution, the coexistence densities as well as the
interfacial tension were obtained. In agreement with theoret-
ical expectations and other simulations, ultralow values for
the interfacial tensiongIN are found. Our results confirm that
for short rods, the interfacial tension, as well as the coexist-
ence densities, are considerably lower than the Onsager pre-
dictions. This demonstrates the need for improved theory to
describe the limit of shorter rods, which is required if the
connection to experiments is ever to be made. In the future,

we hope to extend our simulation method to the case of hard
spherocylinders. Note that grand canonical simulations of
hard particles are challenging, because the acceptance rate
for insertion is typically very low. We are currently investi-
gating different biased sampling techniques in order to im-
prove efficiency. Also, the investigation of the structural
properties of the IN interface is in progress.

ACKNOWLEDGMENTS

We are grateful to the Deutsche Forschungsgemeinschaft
sDFGd for supportsTR6/A5d and to K. Binder, M. Müller, P.
van der Schoot, D. Cleaver, and R. van Roij for stimulating
discussions and helpful suggestions. We also thank G. T.
Barkema for suggesting some of the numerical optimizations
used in this work. T.S. was supported by the Emmy Noether
program of the DFG. Allocation of computer time on the
JUMP at the Forschungszentrum Juelich is gratefully ac-
knowledged.

f1g L. Onsager, Ann. N.Y. Acad. Sci.51, 627 s1949d.
f2g M. Doi and N. Kuzuu, Appl. Polym. Symp.41, 65 s1985d.
f3g W. E. McMullen, Phys. Rev. A38, 6384s1988d.
f4g Z. Y. Chen and J. Noolandi, Phys. Rev. A45, 2389s1992d.
f5g Z. Y. Chen, Phys. Rev. E47, 3765s1993d.
f6g D. L. Koch and O. G. Harlen, Macromolecules32, 219

s1999d.
f7g K. Shundyak and R. van Roij, J. Phys.: Condens. Matter13,

4789 s2001d.
f8g P. van der Schoot, J. Phys. Chem. B103, 8804s1999d.
f9g W. Chen and D. G. Gray, Langmuir18, 663 s2002d.

f10g E. Velasco, L. Mederos, and D. E. Sullivan, Phys. Rev. E66,
021708s2002d.

f11g M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. E63,
051703s2001d.

f12g P. Bolhuis and D. Frenkel, J. Chem. Phys.106, 666 s1997d.
f13g M. A. Bates and C. Zannoni, Chem. Phys. Lett.280, 40

s1997d.
f14g M. A. Bates and C. Zannoni, Chem. Phys. Lett.288, 209

s1998d.
f15g M. P. Allen, J. Chem. Phys.112, 5447s2000d.
f16g M. P. Allen, Chem. Phys. Lett.331, 513 s2000d.
f17g M. S. Al-Barwani and M. P. Allen, Phys. Rev. E62, 6706

s2000d.
f18g A. J. McDonald, M. P. Allen, and F. Schmid, Phys. Rev. E63,

010701sRd s2000d.
f19g A. Z. Panagiotopoulos, Mol. Phys.61, 813 s1987d.
f20g N. Akino, F. Schmid, and M. P. Allen, Phys. Rev. E63,

041706s2001d.
f21g J. S. Rowlinson and B. Widom,Molecular Theory of Capillar-

ity sClarendon, Oxford, 1982d.
f22g Q. Yan and J. J. de Pablo, J. Chem. Phys.113, 1276s2000d.
f23g P. Virnau and M. Müller, J. Chem. Phys.120, 10925s2004d.
f24g J. Potoff and A. Panagiotopoulos, J. Chem. Phys.112, 6411

s2000d.
f25g W. Góźdź, J. Chem. Phys.119, 3309s2003d.
f26g P. Virnau, M. Müller, L. G. MacDowell, and K. Binder, J.

Chem. Phys.121, 2169s2004d.
f27g R. L. C. Vink and J. Horbach, J. Chem. Phys.121, 3253

s2004d.
f28g K. Binder, Phys. Rev. A25, 1699s1982d.
f29g D. P. Landau and K. Binder,A Guide to Monte Carlo Simula-

tions in Statistical PhysicssCambridge University Press, Cam-
bridge, 2000d.

f30g A. D. Bruce and N. B. Wilding, Phys. Rev. Lett.68, 193
s1992d.

f31g Y. C. Kim, M. E. Fisher, and E. Luijten, Phys. Rev. Lett.91,
065701s2003d.

f32g S. Wolfsheimersprivate communication, 2005d.
f33g D. Frenkel and B. Smit,Understanding Molecular Simulation

sAcademic Press, San Diego, 2001d.
f34g M. Müller and N. B. Wilding, Phys. Rev. E51, 2079s1995d.
f35g N. B. Wilding, Am. J. Phys.69, 10 s2001d.
f36g J. Kaupužs, cond-mat/0501041, 2004.
f37g D. J. Cleaver and M. P. Allen, Mol. Phys.80, 253 s1993d.

INTERFACIAL TENSION OF THE ISOTROPIC-… PHYSICAL REVIEW E 71, 051716s2005d

051716-7


