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Interfacial tension of the isotropic-nematic interface in suspensions of soft spherocylinders
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The isotropic to nematic transition in a system of soft spherocylinders is studied by means of grand canoni-
cal Monte Carlo simulations. The probability distribution of the particle density is used to determine the
coexistence densities of the isotropic and the nematic phases. The distributions are also used to compute the
interfacial tension of the isotropic-nematic interface, including an analysis of finite size effects. Our results
confirm that the Onsager limit is not recovered until for very large elongation, exceeding dt/Bas40, with
L the spherocylinder length arid the diameter. For smaller elongation, we find that the interfacial tension
increases with increasing/D, in agreement with theoretical predictions.
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I. INTRODUCTION Even the experimental determination of the rod dimensions
and D, required if a comparison to theory is to be made,
On change of density, suspensions of rodlike particles unpresents complication$].

dergo a phase transition between an isotropic fluid phase, In order to validate the assumptions made by the various
where the particle orientations are evenly distributed, and ateoretical approaches, it is nevertheless important to test the
anisotropic nematic fluid phase, where the particle orienta@ccuracy of the theoretical predictions. To this end, computer
tions are, on average, aligned. This phenomenon was eximulations are ideal, because they, in principle, probe the
plained by Onsager in a theory based on infinitely elongate@hase behavior of the model system without resorting to ap-

hard spherocylinderl]. Onsager theory has been remark-Proximations. With -inexpensive computer power readily
ably successful at describing the isotropic to neméiit) available nowadays, several groups have taken the opportu-

. i . . ity to investigate the IN transition by means of simulations
transition, and still serves as the basis for many theoretic . :
) L ; P -18. th
investigations of the properties of liquid crystals. Over the 11-18. An example of this approach is R¢L2], where the

last 2 for | | h . i tc existence properties of the bulk isotropic and nematic
ast 20 years, for instance, several groups have investigateff,aseq of hard spherocylinders are carefully mapped out us-
the properties of the IN interface using Onsager-type densit

) ) S99 g Gibbs ensemble Monte Car[d9]. These simulations
functional approachef2—7]. An important finding of these generally recover the Onsager limit for long rods, while for

studies is that the interfacial tensigfy of the IN interface is  ghorter rods pronounced deviations show[@g]. Unfortu-
minimized when the director, which is the axis of averagenateb/, the Gibbs ensemble cannot be used to meagyre
orientation of the particles, lies in the plane of the interfacewwnhich is our aim in this work.
In the case of in-plane alignmeny,, is predicted to be very  To obtainy, in simulations, different techniques must be
low, but the precise value varies considerably between difused. One such technique is based on the anisotropy of the
ferent authorg8,9]. Theoretical estimates foy,y typically  pressure tensor. In Ref18], this method is applied to sus-
range from 0.1567] to 0.34[3], in units ofkgT/LD, withL ~ pensions of ellipsoids with axial ratie=A/B=15, whereA
the rod lengthD the rod diametefT the temperature, arig  is the length of the symmetry axis of the ellipsoids, d@hd
the Boltzmann constant. that of the transverse axis. The corresponding interfacial ten-
Obviously, the Onsager limit of infinite rod length is sion is 0.006+0.00%;T/B?~0.09ksT/AB if a hard inter-
purely academic. In order to describe more realistic situaaction potential is wused, and 0.011+0.0Q4/B?
tions, it is necessary to go beyond the Onsager approxima=0.165kgT/AB using a soft potential. Note that the aniso-
tion, and consider the case of finite rod length. An example isropy of the pressure tensor is very small, and therefore dif-
the theoretical work of Ref{10], which demonstrates that ficult to measure accurately in practice, as indicated by the
the interfacial tension in the case of finite rod length is con-error bars.
siderably lower than predicted by Onsager theory. In Ref.[20], again for(soft) ellipsoids withk=15, a value
To test the accuracy of the theoretical estimatesyQf  of the interfacial tension v,=0.016+0.00XgT/B?
one might envision a direct comparison to experimental datas=0.24 kg T/ABis reported. This result was obtained by mea-
Unfortunately, this is not straightforward. The models usedsuring the capillary broadening of the IN interface. Accord-
in theoretical treatments of the IN interface are typicallying to capillary wave theory21], the mean squared ampli-
rather simplistic, usually based on a short-ranged pair potertudes of the capillary fluctuations are proportional toyd,/
tial in a system of monodisperse spherocylinders. It is noand this can be used to obtain the interfacial tension. Unfor-
reasonable to expect quantitative agreement with experiunately, capillary wave theory is only valid in the long-
ments using these models, because the interactions in theavelength limit, such that very large system sizes are re-
experimental system will be much more complex. For ex-quired. Moreover, if, as in Ref[20], periodic boundary
ample, polydispersity may be an important factor, and it isconditions are used, two interfaces will be present in the
not clear to what extent long-range interactions play a rolesimulation box. Sincey, is very small, large capillary fluc-
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tuations can occur, and one needs to be aware of interactions ] [ L | | o
between the two interfaces. C : : : : )?D
Clearly, in order to obtainy, more accurately, much A + M

more computer power or different simulation techniques are
required. Recent advances in grand canonical sampling 4
methodg 22,23 have enabled accurate measurements of the
interfacial tension in simple fluid®4,25, and complex flu-

ids such as polymer solutiofi26] and colloid-polymer mix-
tures[27]. Our aim in this paper is to apply these techniques
to the IN transition in a system of soft spherocylinders, and
to extract the corresponding phase diagram and the interfa-
cial tension. Simulations in the grand canonical ensemble
offer a number of advantages over the more conventional a

methods discussed previously. More precisely, in grand ca-

nonical simulations, both the coexistence properties can be FIG. 1. Two-dimensional representation of the simulation model
probed, as in the Gibbs ensemble, as well as the interfacié’lf.this work. The liquid (;rystals are modeled as soft spherocylir)ders
properties. Additionally, finite-size scaling methods are avail\Vith elongationL and diameteD. Two rods A and B interact via
able that can be used to extrapolate simulation data to thig® Pair potential of Eq(1), which is a function of their minimum

thermodynamic limi{28—31. It has been demonstrated that 9/Stancer only. If the rods overlap, the system pays a constant
grand canonical ensemble simulations combined with nov gnergy cosk. To speed up the determination of overlap, the simu-
eIation box is subdivided into cubic cells with edge lengtlsee the

finite _size scaling algorithms can vyield results of truly im- details in text.
pressive accurachB1].

This article is structured as follows: First, we introduce ) ) o
the soft spherocylinder model used in this work. Next, weWe may use the particle number density N/V to distin-
describe the grand canonical Monte Carlo method, and ex3uish between both phases, witthe number of rods in the
plain how the coexistence properties and the interfacial tenyStém andv the volume of the simulation box. Following
sion are obtained. Finally, we present our results, followed irffonvention, we also_introduce the reduced density

the last section by a discussion and an outlook to futuréP/Pep With pe,=2/(v2+(L/D)y3) the density of regular
work. close packing of hard spherocylinders. Orientational order is

as usual measured by ti$¢ order parameter, defined as the
Il. MODEL maximum eigenvalue of the orientational ten€or

N
In this study, the particles are modeled as repulsive soft

spherocylinders of elongatioh and diameterD. Hard Qup = ﬁz (SUiaip = Gap)- 2
spherocylinders can, in principle, be dealt with, too, but they

severely decrease the efficiency of the simulafibe accep- Here, u;, is the a component(a=x,y,z) of the orientation
tance rates in simulations of hard spherocylinders are typivector i of rodi (normalized to unity, and ,4 is the Kro-
cally 1000 times lower as compared to the soft spherocylinnecker delta. In the case of orientational order, such as in the
ders considered in this woil82]). The interaction between nematic phases, assumes a value close to one, while in the
two rodsA andB is given by a pair potential of the form  disordered isotropic phass,; is close to zero.

e, <D,

Vu(f) = {0 Cerise 1) Ill. SIMULATION METHOD

’ ’ The simulations are performed in the grand canonical en-
with r the distance between two line segments of lerigth semble. In this ensemble, the volurigthe temperaturd,

see Fig. 1. The total energy is thus proportional to the numand the chemical potential of the rods are fixed, while the
ber of overlaps in the system. In this work, the rod diametenumber of rodsN inside the simulation box fluctuates. The
D is taken as unit of length, anlg T as a unit of energy. The insertion and removal of rods are attempted with equal prob-
strength of the potential is set t=2. Note that in the limit  ability, and accepted with the standard grand canonical Me-
e—, this model approaches a system of infinitely hardtropolis rules, given by A(N—N+1)=min[1,[V/(N
rods. +1)]ePrEBr] and A(N—N-1)=min[1,(N/V)e BAEBr],

To study the IN transition, we typically use the density with AE the energy difference between the initial and final
and the rod alignment as order parameters. Note that both tretate, and3=1/kgT [29,33. The simulations are performed
isotropic and the nematic phase are fluid phases, in the sensea three-dimensional box of sizgx L, X L, using periodic
that long-range positional order of the centers of mass idoundary conditions in all directions. In this work, we fix
absent. In the nematic phase, however, there is orientational=L,, but we allow for elongation in the remaining direc-
order where, on average, the rods point in one directiortion L,=L,. Moreover, to avoid double interactions between
(called the director In the isotropic phase, on the other rods through the periodic boundaries, we Ilsgt-2L.
hand, there is no orientational order. Since the density of the During the simulations, we measure the probabiRtiN),
nematic phase is slightly higher than of the isotropic phasedefined as the probability of observing a system contaihing
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that the director of the nematic phase lies in the plane of the

FIG. 2. Coexistence distributiov=kgT In P(N) of the isotropic  interfaces. This was the typical case for the snapshots studied
to nematic transition in a system of soft rods interacting via@y. by us, and is consistent with the theoretical prediction that
with e=2 andL/D=15. The low-density peak corresponds to the in-plane alignment yields the lowest free energy.
isotropic phas€lSO), the high-density peak to the nematic phase  The barrierAF in Fig. 2 thus corresponds to the free
(NEM), and the barriedF to the free energy difference between energy cost of having two interfaces in the system. Since, in
the two phase€AF is given by the average peak height as measureghjs work, the box dimensions are chosen such thatl,
from the minimum in between the peakdhe above distribution  and | =L, the interfaces will be oriented perpendicular to
was obtained using box dimensiohg=2.1L and L,=8.4L. The  the elongated direction, since this minimizes the interfacial
coexistence value of the chemical potential readgta$.15 and area, and hence the free energy of the system. The total in-
was obtained using the equal area criterion described in the text. terfacial area in the system thus equdl§.$ince the inter-

o _ facial tension is simply the excess free energy per unit area,
rods. Note that the shape of the distribution will depend onye may write

the rod elongatiorh./D, the temperatur&, and the chemical

potentialx. Moreover, there may be finite-size effects, intro- (LY = AF/(2L§), (3)
ducing additional dependences on the box dimendigrsd

L,. At phase coexistence, the distributi®N) becomes bi-  With ¥(L,) the interfacial tension in a finite simulation box
modal, with two peaks of equal area; one located at smaNvith lateral dimensior, [28]. To obtain the interfacial ten-
values ofN corresponding to the isotropic phase, and onesion in the thermodynamic limit, one can perform a finite
located at high values ofl corresponding to the nematic Size scaling analysig28] to estimate lim _..yin(Ly). Alter-
phase. A typical coexistence distribution is shown in Fig. 2,natively, away from any critical point, the most dominant
where the logarithm oP(N) is plotted. Coexistence is deter- finite size effects will likely stem from interactions between
mined using the equal area rul84]. At coexistence, the the two interfaces. In this case, it is feasible to use an elon-
equal area rule implies thdﬁmp(N)dN:ITMP(N)dN, with  gated simulation box with_,>L,, such as in Fig. 3. The

o _ advantage of using an elongated simulation box is that inter-
(N) the average of the full distributiotN)=/oNP(N)AN, actions between the interfaces are suppressed. This enhances
o _ . : . i a flat region inW between the peaks, indicating that the
JoP(N)dN=1. The coexistence density of the isotropic phasqnterfaces are no longer interacting, and that finite size ef-

follows tnwahllly from the average ofP(N) in first peak  focts will likely be small. In this work, both approaches will
p,so:(Z/V)ff) 'NP(N)dN, and similarly for the nematic pe ysed.
phasepnem=(2/V) [y NP(N)dN, where the factors of 2are a  |f the free energy barrieAF is large, transitions between
consequence of the normalization PfN). the isotropic and the nematic phase become less likely, and
The interfacial tensionyy, is extracted from the logarithm the simulation will spend most of the time in only one of the
of the probability distributionW=kgT In P(N). Since W  two phases. A crucial ingredient in our simulation is there-
corresponds to the free energy of the system, the averad@re the use of a biased sampling technique. We use succes-
height AF of the peaks ifW, measured with respect to the Sive umbrella sampling23] to enable accurate sampling in
minimum in between the peaks, equals the free energy bafegions wherd®(N), due to the free energy barrier separating
rier separating the isotropic from the nematic phase. Wheihe phases, is very small. Note also that phase coexistence is
the overall density of the system is in the interval betweerPnly observed if the chemical potentialis set equal to its
the peaksyso<p<<pnem, COEXistence between an isotropic Coexistence value. This value is in general not known at the
and nematic domain is observed. A snapshot of the system gtart of the simulation, but it may easily be obtained by using
this regime reveals a slab geometry, with one isotropic rethe equatiorP(N| u;) =P(N|uo)e##17#0N, with P(N|u,) the
gion, and one nematic region, separated by an intefage  probability distributionP(N) at chemical potentighk,. In the
cause of periodic boundary conditions, there are actually twsimulations, we typically set the chemical potential to zero
interface. An example snapshot is shown in Fig. 3. Noteand use successive umbrella sampling to obtain the corre-

where we assume th&(N) has been normalized to unity,
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sponding probability distribution. We then use the above
equation to obtain the desired coexistence distribution, in
which the area under both peaks is equal.

IV. NUMERICAL OPTIMIZATIONS 0.4 1

Most of the CPU time in our simulations is spent on cal-
culating the distancebetween two line segments; see Fig. 1.
Naturally, one tries to minimize the number of calls to the
routine that determines the distance. To this end, we use a 0.2 1
cubic linked cell structure, which is schematically illustrated
in Fig. 1. The crucial point is that the lattice constanis
chosen such thdd <a<L. To determine if rod B in Fig. 1
overlaps with any of the other rods in the system, it is suffi-
cient to consider only those rods contained in the cubes in-
tersected by rod Bshaded gray plus the rods contained in
the nearest and next-nearest neighbors of these cubes. SinceFIG. 4. Soft spherocylinder phase diagram of the IN transition
the isotropic to nematic transition occurs at low density, mostising e=2 in Eq.(1). Shown is the reduced densigy of the iso-
cubes will be empty, resulting in a substantial efficiencytropic phaséclosed circlesand of the nematic phasepen circles
gain. Some CPU time is used for manipulating the linked celPS & function oL/D. The inset shows the concentration variable
structure, but for large systenissN>1500 and long rods s a function oD/L for both the isotr.opic and the nematic phase.'
(=L/D>10), the gain in efficiency is already a factor of 5. The lower and upper arrow in the inset mark the Onsa}ger limit
Some fine tuning is required to obtain an optimal value of thq'.jll‘_>0 for the Isotropic and the nematlc_phase, respectively. The
lattice constant. We found that=0.2L typically gives good Ines connecting the points serve as a guide to the eye.
results.

A further optimization concerns the calculation of te ~ Phase as function df/D. We observe that the phase diagram
order parameter; see E(). In a naive implementation, de- IS qualitatively similar to that of hard spherocylind¢f<],
termining the orientational tens@ involves anO(N) loop ~ the quantitative difference being that, for soft rods, the IN
over all rods in the system. In our implementation, the tensof@nsition is shifted toward higher denS|2ty. The inset of Fig. 4
elements ofQ are updated after each accepted Monte Carl$hows the concentration variatte 7DL"p/4 as a function
move, which can be done at the cost of only a few addition®f D/L. For hard SphEYOCylln_derS, Qn_sager theqry predicts
and multiplications. Since we keep the tensor elements upPatCiso=3.29 andcygy=4.19 in the limit of an infinite rod
dated throughout the simulation, ti@(N) loop of Eq. (2) length, or equivalentlyp/L — 0. In case Qf j[he soft p_ote[11t|al
never needs to be carried out. Finally, to determine the max®f Ed: (1), these values must be multiplied tg -e Py
mum eigenvalue of), we do not use a numerical scheme, _zl_.16 for e=2. In t_he inset of F|g. 4, the corresponding
but instead use the exact expression for the roots of a thirlimits are marked with arrows. As in Reff12], we observe
degree polynomial. The advantage of this implementation i€hat the simulation data for the isotropic phase smoothly ap-
that the value o6, is known exactly throughout the simula- Proach the Onsager limit, while the nematic branch of the
tion, at a cost exceeding no more than one percent of thBinodal seems to overshoot the Onsager limit. This we at-
total invested CPU time. tribute to equilibration problems. To simulate the IN transi-

We conclude this section with a few benchmarks. Eor tion in the limit D/L—0, large system sizes are required,
=2 in Eq. (1), we found that the acceptance rate of grandand it become; |ncreasmgly'd|ff|.cult to obtain accurate re-
canonical insertion is around 9% in the isotropic phase, angU!ts- To quantify the uncertainty in our measurements, addi-
it decreases to around 6% in the nematic phase. The accej@nal independent simulations for rod elongatio/D =25,
tance rates are rather insensitiveLttD. With the optimized 30, and 35 were performed. The corresponding data are also
implementation described in this section, we can typicallyShown in Fig. 4. FolL/D =30, we observe significant scat-
generate 5000-8000 accepted grand canonical moves p@r while forL/D§25, the uncertainty is typically smaller
second on a 2.2 GHz AMD Opteron processor. than the symbol size used in the plots.

V. RESULTS B. Interfacial tension

Next, the interfacial tensionyy of the IN interface is
determined forL/D=10 andL/D=15. Unfortunately, the

We first use our grand canonical Monte Carlo scheme t@ystem size used to compute the phase diagram in the previ-
determine the IN phase diagram of the soft spherocylindeous section was insufficient to accurately extract the interfa-
system of Eq.(1) using e=2. For several rod elongations cial tension because no flat region between the peaR$Nn
L/D, we measured the distributioi(N), from which piso  could be distinguished. This indicates that the interfaces are
andpnem Were obtained. The system size used in these simustill strongly interacting. To properly extract the interfacial
lations is typicallyL,=L,=2.1 andL,=4.2L. In Fig. 4, we  tension, much larger systems turned out to be required. In
plot the reduced density of the isotropic and the nematithis case, care must be taken in the sampling procedure.

A. Phase diagram

051716-4



INTERFACIAL TENSION OF THE ISOTROPIC-. PHYSICAL REVIEW E 71, 051716(2009

0.80 . ! . ! . 6
0.60 1 ‘ | - 5] a
&' 0.40 1 | | 44
0.20 1 F 2 37
b
0.00 . T T T T 24
0 20 40 60 80 100 120
I time [hours] 11
c
0.28 0 . . . . .
0.35 0.36 0.37 038 0.39 040 041
0.27 1 "
P
‘a 0.26 FIG. 6. Coexistence distribution®V=kgTIn P(N) of soft
spherocylinders with./D=10 ande=2 for various system sizes. In
0.25 1 each of the above distributions, the lateral box dimension was fixed
N ¥ atL,=L,=2.3, while the perpendicular dimension was variéa):
0.24 . , . . . L,=2.3,; (b) L,=10.39,; (c) L,=13.4.. The corresponding free en-
0 20 40 80 80 100 120 ergy barriersAF are(a) 1.52+0.05;(b) 2.47+0.13;(c) 2.29+0.15,
time [hours] in units ofkgT. The error bars indicate the magnitude of the scatter

in AF for a number of independent measurements.
FIG. 5. Monte Carlo time series of a biased grand canonical . .
simulation. The top frame shows ti8 order parameter as a func- reduped density. In case a perfect estimateP¥gi) could be
tion of the invested CPU time, the lower frame the reduced densityp. ! i .. . ; .
with CPU time expressed in hours on a 2.6 GHz Pentium. DuringWIII _be_come flat in the_ "”.“t C.)f a long simulation time. The
the simulation, the reduced density was confined to the intervagewat.Ion from a flat d'St.”buuon can be used to eSt'me}te the
0.245< p*<0.275, as indicated by the horizontal lines in the lower error in P(N), or alternatively, to ConstrUCt a better estimate
figure. The data were obtained usihgD=15, e=2, L,=2.1L and fqr P(N). The_ latter approach was In fact adopteq by us.
L,=8.4, which are the same parameters as used in Fig. 2. First, successive umbrella sampling is used to obtain an ini-

tial estimate forP(N). This estimate is then used as the input

Many sampling schemes, especially the ones that are easy ¢y @ number of biased simulations using the modified
implement, such as successive umbrella sampling, put a bidg@miltonian, and improved iteratively each time.
on the density only. Such schemes tend to “get stuck” in To obtain the interfacial tension, the most straightforward
metastable droplet states when the system size becomes lafgaProach is to fix the lateral box dimensiond gt L, and to

[26]. As a result, one may have difficulty reaching the statd'créase the elongated dimensibge>L, until a flat region
with two parallel interfaces, in which case HS) cannot be Petween the peaks in the distributiéN) appears. For soft
used ’ spherocylinders of elongation/D=10, the results of this

Therefore, for large systems, one must carefully check th@/0¢€dure are shown in Fig. 6. Indeed, we observe that the
validity of the simulation results. To this end, we occasion--c3'O" between the peaks becomes flatter as the elongation of

allv inspect simulation snapshots. For sufficientlv elongate he simulation box is increased. Unfortunately, even for the
1y ISP P S y 9 argest system that we could handle, the region between the
simulation boxed.,>L, and at densities inside the coexist-

. indeed ob | peaks still displays some curvature. In other words, the in-
ence regionpso<p<pnem, We Indeed observe two planar iefaces are still interacting, indicating that even more ex-

interfaces oriented perpendicular to the elongated directioyeme pox elongations are required. Ignoring this effect, and
in accord with Fig. 3. To further check the consistency of theapplying Eq.(3) to the largest system of Fig. 6, we obtain for
measured distributionB(N), we performed a number of ad- the interfacial tensiony,y=0.0022kg T/D?. For rod elonga-
ditional grand canonical simulations using a biased Hamiltion L/D=15, the distribution of the largest system that we
tonian of the formH=",+W, with H, the Hamiltonian of  could handle is shown in Fig. 2. The height of the barrier
the real system defined by E€L) and W=-kgT In P(N). If reads ad\F=10.6kgT, and the corresponding interfacial ten-
the measure®(N) is indeed the equilibrium coexistence dis- sion yn=0.0053kg T/D?.

tribution of the real system, a simulation using the biased An alternative method to obtain the interfacial tension is
Hamiltonian should visit the isotropic and the nematic phasdo perform a finite size scaling analysis. Following @8],
equally often on averad®3,35. This is illustrated in the top  the interfacial tensiony(L,) in a cubic system with edge,,
frame of Fig. 5, which shows th&, order parameter as a shows a systematic, dependence that can be written as
function of the elapsed simulation time during one such bi- _ 2 2

ased simulation. Indeed, we observe frequent transitions be- NL) = 7 + 3/l +In(L)/L, @
tween the isotropi¢S,~0) and the nematic phas&,~1).  with ., the interfacial tension in the thermodynamic limit
Also shown in Fig. 5 is the corresponding time series of the(assuming periodic boundary conditions and dimensionality
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a systematic finite size scaling analysis of the IN interfacial
tension in a continuous mod&ee Ref[37] for simulation
results of a liquid crystal model defined on a latlic€he
results of Fig. 7 seem reasonable, but simulations of larger
systems are clearly needed, in order to confirm the validity of
Eqg. (4) in systems of elongated particles. The advantage of
the present simulation approach is that the statistical errors
are small, and that finite size effects are clearly visible as a
result.

VI. DISCUSSION

In this section, we compare our findings to other work.
More precisely, we considéf) theoretical treatments within
the Onsager approximatiori2) theoretical treatments be-

FIG. 7. Finite size extrapolation of the IN interfacial tension of Yond the Onsager approximation, a8} other simulations.

soft spherocylinders witle=2 and rod elongatioh/D=10 and 15.
Shown is the interfacial tension of the finite systefth,) in units of

ksT/D?, measured in a cubic system with edgge as a function of
(L/Ly2. Lines are linear fits to the data using E4). with b=0. The

upper(lower) arrow indicates the estimate gfi obtained using the
method of Fig. 6 fol,/D=15(10).

d=3). In general, the constangsandb are not known. How-
ever, recent theoretical argumeh86] suggest that in three
dimensions, the logarithmic term should vanish, implying
=0. To estimatey.,, we used Eq(3) to measurey(L,) for a
number of different system sizes. We then used @g.to

For reasons outlined in the Introduction, we do not compare
to experimental data.

It is clear from the phase diagram of Fig. 4 that the On-
sager limit is not recovered until very large rod elongation,
exceeding at least/D=40. As a result, our estimates for the
interfacial tension differ profoundly from Onsager predic-
tions. Typically, vy in our simulations is four times lower
compared to Onsager estimates. Note that our simulations
also show thaty,y increases with_/D, toward the Onsager
result, so there seems to be qualitative agreement. However,
to properly access the Onsager regime, additional simula-
tions for large elongatioh/D are required. Unfortunately, as

extrapolate these measurements to the thermodynamic limitydicated by the scatter in the data of Fig. 4, and also in Ref.
assumingb=0. For soft spherocylinders, the results of this[12], such simulations are tremendously complicated. It is
procedure are summarized in Fig. 7. Shown is the interfaciafjuestionable if present simulation techniques are sufficiently

tension of the finite system as a function(bfL,)?. The data
seem reasonably well described by E4), as is indicated by

the fits. The corresponding estimates for the interfacial ten-

sion are y=0.0035kgT/D? and y,,=0.0059kzT/D?, for
L/D=10 and 15, respectively.

powerful to extractyy with any meaningful accuracy in the
Onsager regime.

If we compare to the theory of Refl0], which goes
beyond the Onsager approximation and should therefore be
more accurate for shorter rods, we observe better agreement.

For comparison, the arrows in Fig. 7 mark the interfacialFor L/D=10, the theory predicty;y=0.087kgT/(L+D)D,
tension as obtained using the previous method of Fig. 6which still differs from our result by a factor of approxi-
Clearly, there is some discrepancy. The problem related tonately 2. ForL/D=15, however, a naive interpolation of the
the first method is that the system size was not sufficient tolata in Ref.[10] yields yy=~0.1kgT/(L+D)D, which ex-
completely suppress interface interactions. Moreover, the lageeds our result by only 6%. Note that REE0] considers
eralL, dimension was also rather small, so there may still behard spherocylinders, whereas our work is based on soft
finite size effects in this dimension. Hence, we believe thespherocylinders. The simulations of R¢L8] on ellipsoids
finite size scaling results to be more reliable. The latter estisuggest that the interfacial tension increases, when switching
mates are listed in Table |, together with the coexisting phas&om a hard to a soft potential. The good agreement we ob-
densities, which effectively summarizes the main results oferve with Ref[10] should therefore be treated with some
this work. To our knowledge, this is the first study to reportcare.

TABLE |. Bulk properties of the coexisting isotropic and nematic phase in a system of soft spherocylin-
ders interacting via Eql) with e=2 and rod elongatioh/D=10 and 15. Listed are the reduced dengity
and the normalized number densityD? of the isotropic and the nematic phase. Also listed is the interfacial
tensiony,y of the IN interface, obtained using finite size scaling, expressed in various units to facilitate the
comparison to other work. The error bar in the latter quantity indicates the uncertainty of the fit in Fig. 7.

L/D Isotropic phase Nematic phase Interfacial tensjgn
p* pLD? p* pLD? kgT/D? ksgT/LD kgT/(L+D)D
10 0.363 0.388 0.397 0.424 0.0035+0.0003 0.035 0.039
15 0.244 0.267 0.280 0.307 0.0059+0.0001 0.089 0.094
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As mentioned in the Introduction, computer simulationswe hope to extend our simulation method to the case of hard
of soft ellipsoids with k=15 yield interfacial tensions of spherocylinders. Note that grand canonical simulations of
%n=0.011+0.0045T/B> and ,=0.016+0.00RzT/B>  hard particles are challenging, because the acceptance rate
[18,20. For L/D=15, our result for soft spherocylinders is for insertion is typically very low. We are currently investi-
Considerably lower. ObViOUS'y, Spherocylinders are not e”ip-gating different biased Samp”ng techniques in order to im-

soids, and this may well be the source of the discrepancysrove efficiency. Also, the investigation of the structural
Note also that the shape of the potential used by us is diffefyroperties of the IN interface is in progress.

ent from that of Refs[18,20.

In summary, we have performed grand canonical Monte
Carlo simulations of the IN transition in a system of soft
spherocylinders. By measuring the grand canonical order pa-
rameter distribution, the coexistence densities as well as the We are grateful to the Deutsche Forschungsgemeinschaft
interfacial tension were obtained. In agreement with theorettDFG) for support(TR6/A5) and to K. Binder, M. Mdller, P.
ical expectations and other simulations, ultralow values fowan der Schoot, D. Cleaver, and R. van Roij for stimulating
the interfacial tensiory,y are found. Our results confirm that discussions and helpful suggestions. We also thank G. T.
for short rods, the interfacial tension, as well as the coexistBarkema for suggesting some of the numerical optimizations
ence densities, are considerably lower than the Onsager prased in this work. T.S. was supported by the Emmy Noether
dictions. This demonstrates the need for improved theory tprogram of the DFG. Allocation of computer time on the
describe the limit of shorter rods, which is required if the JUMP at the Forschungszentrum Juelich is gratefully ac-
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